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The geometrical significance of strain trajectory curvature 
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Abstract--We derive the following two-dimensional equations for the curvature of intersecting strain trajec- 
tories: 

KI = ~2(kl - f t) ;  K2 = At(k2 - f2)- 

The subscripts refer to one or the other trajectory; K expresses curvature in the undeformed state; k, curvature 
in deformed state; 2 is the stretch (final length divided by original length); and f i s  the flexure, a logarithmic strain 
gradient defined for each trajectory as ft = -Oq/Osz and f2 = Oe2 los1, where e = In 2 is logarithmic stretch and s is 
true arc length along a trajectory. The curvature equations are simple forms of the equations of strain 
compatibility. We derive them from first principles in the Appendix. 

In the main text, we illustrate and verify the curvature equations using six theoretical examples of strain fields 
and an experimental one. Each theoretical example is deliberately chosen to illustrate the contribution of one or 
more terms in the curvature equations. The first four examples are single fans, where trajectories are polar 
co-ordinates. The other three examples are double fans from more complex strain fields. 

The equations and examples sometimes uphold and sometimes contradict the convergence hypothesis, in 
which strain intensity is assumed to increase as trajectories converge. The equations also show that strain 
gradients can exist even if both trajectories have no curvature and there are no volume changes. In practice, if a 
geologist knows only the trajectory curvatures at one point in the deformed state, he cannot determine strain 
gradients, because there are too many unknowns in the curvature equations. 

INTRODUCTION 

IN THE last two decades, detailed measurements have 
been made in ductile rocks at various scales throughout 
tectonic regions. Such studies have shown that strain is 
commonly non-uniform across a given region. One of 
the challenges of structural geology is to obtain good 
strain data and so to establish strain patterns with con- 
fidence. Other more mathematical challenges are to 
interpret strain patterns geometrically and to develop 
reliable methods for reversing the strains and obtaining 
tectonic displacements (Schwerdtner 1977, Cobbold 
1977, 1979, 1980, Cobbold & Percevault 1983). 

Where strain data are sparse, it may be helpful to 
know that strain components cannot vary independently 
of one another in space: they must satisfy compatibility 
equations. These equations can be expressed in terms of 
principal directions and principal values. In some re- 
gions, principal directions of strain are more readily 
obtained than principal values. This is especially so if 
there is a cleavage or a stretch lineation that tracks a 
principal direction of strain to within a few degrees or so 
(Ramsay 1967, Siddans 1972, Wood 1974). Cleavage or 
lineation trajectories can then be drawn and may closely 
approximate strain trajectories, although such an 
interpretation is questionable in some instances (Will- 
iams 1976). Once strain trajectories are obtained, what 
constraints do the equations of strain compatibility put 
upon strain values? 

Where strain is non-uniform, strain trajectories are 
often (but not necessarily) curved. Cleavage trajectories 
and lineation trajectories are commonly curved in natu- 

ral rocks, good examples being sigmoidal cleavage pat- 
terns across shear zones (Ramsay & Graham 1970). 
Where one trajectory is curved, the set normal to it 
forms a fan. Convergent (or divergent) cleavage fans are 
common features of folds (Ramsay 1967) and they 
suggest non-uniform strain. 

Thus it seems appropriate to study the geometrical 
significance of trajectory curvature and convergence. 
One question of interest is the possible correlation 
between a convergence of trajectories and an increase in 
strain intensity. Such a correlation seems to occur in 
many natural shear zones and folds (Ramsay 1967, 
Ramsay & Graham 1970). It has also been demonstrated 
to occur in some theoretical examples of strain patterns 
(Ramsay & Huber 1983, p. 43). Hence it has led to the 
following assertions. 

(1) "Slaty cleavage planes converge toward the region 
of highest strain" (Ramsay 1967, p. 181). 

(2) "A special geometric feature of strain trajectories 
is that they converge or diverge. In fact, if they are 
parallel it means either that the strain is homogeneous or 
that they coincide with special types of area change. 
Apart from these special cases, the el trajectories always 
converge as we pass from a region of low strain into a 
region of high strain, whereas the e 2 trajectories diverge 
as we pass from low to high strains" (Ramsay & Huber 
1983, p. 42). 

(3) "It follows that cleavage planes represent the 
traces of the XY planes of adjacent strain ellipsoids and 
that cleavage must obey the geometric rules of finite 
strain trajectories. In our investigations of two-dimen- 
sional heterogeneous strain we concluded that the con- 
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vergence or divergence of X-finite strain trajectories 
went together with increase and decrease in finite strain 
values, respectively. The same holds true for three- 
dimensional X Y  finite strain trajectories and cleavage 
planes. Where cleavage planes converge, the finite strain 
X/Z  ratios increase and this convergence goes together 
with an increase in the intensity of the cleavage" (Ram- 
say & Huber 1983, p. 184). 

These assertions are forms of what we call the con- 
vergence hypothesis, defined precisely later on. To our 
knowledge, this hypothesis has never been investigated 
in a general way. We feel this has become all the more 
necessary, now that the hypothesis has been shown to 
break down for certain theoretical strain patterns within 
folds (Ramsay & Huber 1987, p. 457). 

In this paper, we investigate the geometrical signifi- 
cance of strain trajectory curvature. We use the general 
theory of non-uniform strain in two dimensions to derive 
the curvature equations for trajectories (see Appendix). 
These are special forms of the compatibility equations 
previously derived in a geological context by Cobbold 
(1977, 1980) and reviewed by Cutler & Cobbold (1985). 
For conformity with these papers, we once again follow 
(as much as possible) the terminology of Truesdell & 
Toupin (1960), including the use of 2 for stretch (final 
length divided by original length). 

In the main text, we illustrate and verify the curvature 
equations using simple theoretical strain patterns and 
one experimental one. Each theoretical pattern has 
been specially chosen to illustrate the contribution of 
one or another term in the curvature equations. Hence 
the patterns are not all geologically realistic. They do 
show, however, why the convergence hypothesis holds 
in some situations, but not in others, and this is their 
main value. 

CURVATURE EQUATIONS IN 2-D 

Consider a set of principal strain trajectories in the 
deformed state (Fig. lb). For convenience we use a grid 
of orthogonal curvilinear co-ordinates, x 1 and x2, which 
coincide with the trajectories and are thus called princi- 
pal co-ordinates. Similarly we use another grid of 
principal co-ordinates, X1 and X2, to describe strain 
trajectories in the undeformed state; in other words, 
trajectories for reciprocal strain ellipses (Fig. la). To 
compare the two grids, we refer them to a common 
Cartesian frame, labelled zl, z2 in the deformed state, 
and Z~, Z 2 in the undeformed state, such that a is the 
angle between x~ and zl (Fig. A1) and A, the angle 
between XI and Z~ (see Truesdell & Toupin 1960, 
Cobbold 1980). At a given material point, trajectories 
in the deformed state have curvatures which we mea- 
sure using the parameters kl = Oct/Osa, and k 2 = Oa]Os2, 

where sl and s2 are true arc lengths along xl and x2; 
similarly, in the undeformed state, Kt = OA/OS~ and 
1(2 = OA/OS2, where St and S 2 are arc lengths along )(1 
and X2. 

True curvatures are, by convention, positive quan- 
tities (see Appendix). Our measures are curvatures, but 
with signs attached (positive or negative, to distinguish 
concave from convex curves, as in Fig. A1).We call 
these quantities directional curvatures. 

As a result of deformation, a material line lying under 
X1 (strain trajectory in the undeformed state) comes to 
lie under xl (strain trajectory in the deformed state), as 
discussed in more detail by Cobbold (1979). Although 
not strictly necessary, it is mathematically convenient 
and by no means restrictive to define the co-ordinates so 
that x / =  X1 and x2 = X2 (Cobbold 1980). This leads to a 
simple relationship between the directional curvatures 
(see Appendix): 

K1 = J '2(kl  - f l )  ( l a )  

K2 = 2 , (k2  - f2) ,  ( l b )  

where 21 and 22 are principal stretches along x 1 and x2, 
respectively, and where fl and f2 are strain gradients of 
the kind we callflexures and are defined as 

fl = -ael/aS2; f2 = Oe2/Ost. (2) 

Here, el = In 21 and 62 = In 2 2 a r e  logarithmic stretches. 
Each curvature equation, for example (la),  indicates 

that the initial curvature (KI) can be calculated, know- 
ing: (i) the final curvature (kl); (ii) the transverse stretch 
(22); and Off) the flexure 0')) or transverse gradient of 
trajectory-parallel stretch. Throughout a general strain 
field, each of these parameters is liable to vary. 

We now illustrate and verify the curvature equations 
for four specific examples of ideal single trajectory fans. 
At the same time, we discuss the geometric characteris- 
tics of these examples and test the convergence 
hypothesis. The examples are so chosen that one or 
other parameter, in the curvature equations, vanishes. 
Thus we illustrate the separate contribution of each 
parameter to trajectory curvature. 

IDEAL SINGLE FANS 

In the following ideal single fans, trajectories of one 
family are radiating straight lines, whereas trajectories 
of the other family are concentric circular arcs. Thus the 
principal co-ordinates used to describe them are, in fact, 
polar co-ordinates. For simplicity, we assume that values 
of stretch can vary along radii, but not along arcs of 
circles. This means that radiating straight lines in the 
deformed state were also straight lines (radiating or 
parallel) in the undeformed state. One of the two curva- 
ture equations thus vanishes totally and we need con- 
sider only the other equation. 

Example 1 (Fig. 1). Simple flexure 

In this example, trajectories of each family are 
assumed to be parallel straight lines in the undeformed 
state, so that K~ = K2 = 0 (Fig. la). At later stages 
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Fig. 1. Simple flexure. Configurations of material lines and objects 
(black) are shown in undeformed state (a) and two stages of defor- 
mation (b and c). In the deformed state (b and c), orthogonal cur- 
vilinear co-ordinates (x~, x2) are taken parallel to strain trajectories. In 
the undeformed state (a), or thogonal  curvilinear co-ordinates (Xl ,  
X2) are taken tangent to principal directions of the reciprocal strain 
ellipse. They happen to be cartesian in this example (dotted lines). As 
a result of deformation,  material lines initially lying parallel to X1 or X 2 
come to lie parallel to xz or x2 (Cobbold 1979). In this example, one 
curved trajectory of the x~ family (thick line) maintains its length; its 
radius of curvature (rl) decreases from a value of 2.1 to a value of 1.0 
length units. Profiles (right) show logarithmic stretch (el) of Xl trajec- 

tories as a function of true radial distance (s2). 

(Fig. lb & c), one family (xj lines) becomes increasingly 
curved, whereas the other family (x2 lines) diverges. 
Strain increments accumulate coaxially. The example 
has been drawn with no dilations (area changes). We 
focus attention on one trajectory that maintains a steady 
length (thick line, Fig. 1). Anywhere along this line, 21 = 
22 = 1 and the curvature equation (la) reduces to: 

kl = fl  = -Oex/3s2. (3) 

Equation (3) states that the directional curvature is 
equal to the flexure. It can be verified graphically, using 
profiles of logarithmic stretch (Fig. lb & c). At the 
unextended trajectory, the profile gradient, -1/2.1 
reciprocal length units (r.l.u.) in Fig. l(b), - 1  r.l.u, in 
Fig. 1(c), is equal to kl. The radius of curvature, rt, is the 
reciprocal of the true curvature, which is the absolute 
value of kl. 

Both equation (3) and a casual inspection show that, 
throughout Fig. 1, as x: lines converge, 21 values 
decrease. To ensure no volume change, 22 values 
increase. Below the unextended line, this means that 
2max values and strain intensity both increase, as/] 'max 

trajectories converge. In contrast, above the unextended 
line, 2max values decrease as 2mi . trajectories converge. 
Clearly it is more general to refer to 21, 22, xl and x2, 
rather than to decide which is 2ma x and which is 2mi n. We 
bear this distinction in mind during tests of the con- 
vergence hypothesis, which we restate as follows: 21 
values decrease as x 2 lines converge. Thus, in this 
example, the convergence hypothesis holds. 

\ 
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Fig. 2. Inverse  f lexure.  For  l egend ,  see Fig. 1. For  exp l ana t i on ,  see text .  

Example  2 (Fig. 2). Inverse f lexure 

The deformation here is mathematically the inverse of 
that in example 1. Trajectories of one family are curved 
in the undeformed state (Fig. 2a), but the curvature 
decreases with deformation (Fig. 2b), until it vanishes 
and the trajectories become straight lines (Fig. 2c). As 
before, strain increments accumulate coaxially and there 
are no dilations. We focus attention once again on a line 
that undergoes no length change (thick line, Fig. 2), so 
that 21 = 22 = 1. In the final deformed state (Fig. 2c), k 1 
--- k 2 = 0 and the curvature equation (la) therefore 
reduces to: 

KI = - f l  = Oel/Os2. (4) 

This equation is similar to equation (3), valid for 
example 1, except for the positive sign on the right-hand 
side and the capital letters on the left (referring to 
curvature in the undeformed state). This example shows 
that trajectories in the deformed state can be straight 
lines, even if there is a strain gradient and no dilation (cf. 
Ramsay & Huber 1983, p. 42). The result can be verified 
numerically, using a logarithmic stretch profile (Fig. 2c). 
This yields a gradient of - 1 r.l.u., the negative reciprocal 
of the radius of curvature Rl in the undeformed state. 
Because there is a stretch gradient but no curvature in 
the final deformed state, the convergence hypothesis 
breaks down. 

For the intermediate deformed state (Fig. 2b), the 
curvature equation for the unextended line reduces to: 

K1 = kl - f j ,  (5) 

meaning that the trajectory has non-zero curvatures in 
both the deformed and undeformed states. The differ- 
ence between the directional curvatures is the flexure, 
fl- Because this has a positive value, Ka < kl. We see that 
21 values increase as x2 trajectories converge. Thus the 
convergence hypothesis is not valid in this example. 

The reader may wonder if this example is geologically 
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Fig. 3. Uniform radial stretch. For legend, see Fig. 1. For explanation, see text. 

relevant, even though it is kinematically admissible. 
One possible application is to the straightening of an 
originally curved layer, for example a channel infill. 
Such an occurrence may be rare, but it is by no means 
impossible. Later we will give another application which 
may be geologically more common. 

Example 3 (Fig. 3). Uniform radial stretch 

Trajectory curvature can decrease, not only by inverse 
flexure (Fig. 2), but also if all radii of curvature stretch 
by a common factor, 2 2. The resulting pattern of uniform 
radial stretch (Fig. 3) can be achieved without dilation, 
all arcs suffering equal stretches of 21 = 1/22. Thus 
flexures are non-existant 0rl = f2 = 0) and the curvature 
equation reduces to: 

K1 = 22kl.  (6) 

This simply states that the radius of curvature 
stretches by a factor 22 during deformation. As 22 attains 
large values, so the curvature falls to zero (Fig. 3c). 

Because the x2 trajectories converge but there are no 
strain gradients, the convergence hypothesis does not 
hold in this example. 

A uniform radial stretch is relevant to the buckling of 
embedded layers, but in general it occurs together with 
some flexure, as in the following example. 

Example 4 (Fig. 4). Flexure combined with radial stretch 

The previous examples of flexure (Fig. 1) or inverse 
flexure (Fig. 2), can be combined in any sequence or 
proportion with uniform radial stretch (Fig. 3). We show 
a special combination such that the directional curvature 
of one trajectory (thick line, Fig. 4d) does not change. 
Thus a first increment of uniform radial stretch results in 
an increase in radius of curvature (Fig. 4b); but the 
original curvature can be restored (Fig. 4d) by an incre- 
ment of flexure. Alternatively, a first increment of 
flexure (Fig. 4c) may be followed by an increment of 
radial stretch, to yield the same result. For this special 
e x a m p l e ,  kl = K1 and the curvature equation reduces to: 

K1 = kl = -fl22/(1 - 22), (7) 

which shows howft  and '~2 can  vary together to maintain 
a given directional curvature. 

Finally, for this example, the convergence hypothesis 
holds (Fig. 4d). 

Summary so far 

In general, for a single fan, the curvature equation 
cannot be reduced, so that final directional curvature 
depends upon: (i) initial curvature; (ii) radial stretch; 
and (iii) radial gradient of arc-parallel stretch. The 
separate and combined effects of each of these par- 
ameters have been illustrated and verified in the previous 
examples. The convergence hypothesis holds in some 
examples, but not in others, depending upon the relative 
values and signs of the parameters in the curvature 
equation. 

DOUBLE FANS IN GENERAL STRAIN FIELDS 

At a typical point in a general 2-D strain field, both 
intersecting strain trajectories have curvature. This 
means that adjacent (closely spaced) trajectories of 

. h \ 

c d 

Fig. 4. Flexure combined with radial stretch. For legend, see Fig. 1. 
For explanation,  see text. 
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Fig. 5. Shear zone. Deformed state (a) shows strain ellipses (derived from initial circles) and deformed grid (derived from 
initially square grid parallel to shear direction); profile on the left shows how the amount of shear 7 varies across shear zone. 
Undeformed state (b) is mirror image of deformed state (a) and shows reciprocal strain ellipses. Strain trajectories in 
deformed state (c) and undeformed state (d) are one and the same material grid. Selected grid elements (stippled) show how 

trajectory curvatures change sign during deformation, 

either family are non-parallel: they converge, forming 
fans. We refer to this geometry as a double fan, to 
distinguish it f rom the single fans described earlier. For 
a double fan, neither of the curvature equations in (1) 
vanish. 

Mathematically or geometrically, a double fan can be 
generated by superposing two single fans, in such a way 
that the radial straight lines of the first fan become 
curved. Rather  than follow this procedure,  we prefer  to 
describe three examples of geologically relevant strain 
fields containing double fans. 

E x a m p l e  5 (Fig.  5). Shear  zone  

In an ideal ductile shear zone, the deformation is a 
simple shear of varying amount  V. Values of ~, reach a 
maximum in the center of the zone and fall symmetrically 
to zero at each margin. In both the deformed state 
(Fig. 5d) and its mirror image, the undeformed state 
(Fig. 5c), strain trajectories of each family curve into and 
out of the shear zone. Hence there are double fans at all 
points, except at the margins and along the middle line. 

We now describe the geometry in more detail and use 
symmetry arguments to verify the curvature equations. 
Consider an element  of length, ds, parallel to the shear 
direction in the deformed state. Elements  of arc along 
the strain trajectories are then, by projection, 

d s  1 = ds cos a;  d s  2 = ds sin a.  (8) 

Similarly, in the undeformed state, a line element 
along the shear direction is dS, so that elements of arc 
along the strain trajectories are, by projection, 

dS 1 = d S c o s A ;  dS 2 = d S s i n A .  (9) 

The main feature of simple shear is the invariant 
length of the shear direction: 

ds = dS. (10) 

Also, because of mirror symmetry,  

A + a = 90 ° . (11) 

Using (10) and (11), equation (9) becomes: 

d & = d s s i n a = d s 2 ;  d S 2 = d s c o s a = d S l .  (12) 

Hence the principal stretches have the following values 
in terms of a (Cutler & Cobbold 1985): 

21 = d s l / d S  1 = dsl/dS2 = cot a 
2 2 = ds2/dS 2 = ds2/dsl = tan a. (13) 

The directional curvatures of the trajectories are 

K1 = OA/OS] = -Oa/Os  2 = - k  2 

K2 = OA/OS2 = -Oa/OSl  = - k l ,  (14) 

where (10) and (11) have been used once again. 
Equation (14) can also be written down using symmetry.  

From the foregoing equations, the flexures are easily 
calculated to be 

fL = kt/s in2 a ;  f2 = k2/cOS2 (2. (15) 

If the strain trajectories were straight in the uncle- 
formed state, we would have fl = kl and f2 = k2 (as in 
example 1) and the convergence hypotheses would hold. 
Equation (15) shows that the convergence hypothesis 
also holds for a shear zone, but trajectory curvatures are 
less pronounced than in example 1, by factors of sin 2 a 
and cos-' a ,  respectively. Using (15), we can calculate the 
right-hand sides of the curvature equations (1): 

22(kl - f ] )  = tan a(1 - cosec2 a)kl  = - k  I c o t a  (16a) 

2] (k2 - f 2 )  = cot a(1 - sec 2 a)k2  = - k  2 tan a ,  (16b) 

whereas the left-hand sides of the curvature equations are 

Kx = -Oa/Os2 = - c o t  a(Oa/Os]) = - k  1 cot a 
K 2 = -Oa/Os  1 = - t a n  a(Oa/Os2) = - k  2 tan a. (17) 

The equivalence of (16) and (17) shows that the 
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curvature equations are verified. From (16a), we see 
that reversal of deformation causes the final directional 
curvature kl to be modified by the flexure f t ,  to such an 
extent that the sense (sign) is reversed. Removal of the 
stretch 22 at the point in question then increases the true 
curvature, without further change of sign. The net result 
is that trajectory curvatures in either the deformed or 
the undeformed state are small compared with strain 
gradients f~ and f2. Thus the convergence hypothesis 
barely holds. Indeed the following example 6 shows that 
a small additional distortion suffices to change the signs 
of the directional curvatures, rendering the convergence 
hypothesis invalid. 

Example 6 (Fig. 6). Differential extrusion 

We first take a pattern of non-uniform simple shear, 
due to lateral symmetrical extrusion between two rough 
rigid vertical side-walls. Then we superimpose a small 

OOlOlOlOlOlOlOtOl 
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Fig. 6. Differential extrusion. Initially circular markers, within a 
square grid (a), become ellipses in deformed state (b). Strain trajec- 
tories (c) converge to the right in centre of region, but are more nearly 
straight and parallel in left-hand corners. Strain intensity (d), con- 
toured for values of 22, decreases centrally and to the right. Reciprocal 
images (e)-(h) are for undeformed state. Strain trajectories in de- 
formed state (c) and undeformed state (g) are one and the same 
material grid. Selected grid elements (stippled) show how radius of 

curvature changes with deformation. 

amount of simple flexure (as in example 1). This causes 
the side walls to become tilted out of parallelism 
(Fig. 6b). In the central part of the deformation field, 22 
(2re,x) trajectories now converge strongly to the right 
(Fig. 6c); whereas strain intensity and 2m,x values 
increase to the left (Fig. 6d); thus the convergence 
hypothesis does not hold. The explanation for this can 
be sought visually. Values of stretch 22 are between 1.1 
and 1.3, but the flexure, fl = -Oel/Os2, is significantly 
large in the deformed state; furthermore,  original direc- 
tional curvature KI (Fig. 6g) is greater in magnitude. 
These are almost the conditions for inverse flexure, 
(example 2) where the convergence hypothesis does not 
hold. 

Near the left-hand corners of the extrusion field, 
trajectories have vanishingly small curvatures (Fig. 6c); 
yet there are strong stretch gradients along both families 
of trajectories. Thus in these corners the convergence 
hypothesis breaks down. 

Example 7 (Fig. 7). Experimental diapirism 

To show that example 6 has mechanical and geological 
relevance, we reproduce an experimental result 
obtained by Dixon (1975). He modelled the buoyant 
uprise of a cylindrical ridge of silicone fluid, through a 
heavier fluid overburden,  using silicone putties. A 
square grid was impressed upon a vertical section 
through the undeformed model. In the deformed state 
(Fig. 7a) the grid reveals displacements and allows 
strains to be calculated, We select two areas for dis- 
cussion. 

E 

a 

b 

Fig. 7. Experimental diapirism (after Dixon 1975). Material grid (a), 
square before deformation, reveals displacements. Bars give orien- 
tations and approximate relative magnitudes of maximum stretches. 
Selected areas (ABCD and EFGH) are discussed in text. Strain 
trajectories (b) have been obtained numerically, by interpolation and 

integration. 
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The second area (EFGH, Fig. 7a) is near the centre of 
the rising dome. Here ~'max trajectories converge very 
gently downwards, whereas )~max values increase 
strongly. The convergence hypothesis therefore holds, 
but only just. 

In conclusion, this experimental example shows that 
the convergence hypothesis can hold in one area but not 
in another of the same strain field. 

CONCLUSIONS 

From our two-dimensional geometrical and math- 
ematical study, we draw the following inescapable con- 
clusions. 

(1) Curvature of a strain trajectory in the deformed 
state depends upon three factors: (i) curvature in the 
undeformed state; (ii) magnitude of transverse stretch; 
and (iii) flexure (transverse gradient of trajectory-paral- 
lel logarithmic stretch). 

(2) Depending upon the relative magnitudes of these 
three factors, so the convergence hypothesis may or may 
not hold. 

(3) In the absence of other data, trajectory curvatures 
at a point in the deformed state are thus insufficient for 
geometric interpretation or strain removal. 

(4) Stretch gradients may exist along parallel straight 
trajectories, even if there are no volume changes. 

As the convergence hypothesis holds for ideal shear 
zones and simple fold models, and as strain patterns of 
these kinds are relatively common in nature, the 
geologist is entitled to wonder how reliable the 
hypothesis is as an empirical first approximation. Only a 
detailed assessment of field data and possibly mechanical 
analyses as well may one day provide an answer to this 
question. For the moment, we would advise caution in 
applying the convergence rule. 
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APPENDIX 

DERIVATION OF CURVATURE EQUATIONS 

We derive curvature equations for strain trajectories, starting from 
first principles. The equations are in fact simple forms of compatibility 
conditions for strains. The standard mathematical way of deriving and 
expressing such compatibility conditions is via the Riemann-Christof- 
fel curvature tensor, R (Truesdell & Toupin 1960, p. 272). In general, 
this curvature tensor is defined in terms of a metric tensor. If the metric 
tensor is chosen to be Cauchy's strain tensor, c, then the compatibility 
amongst the components of c leads to R = 0. Thus the vanishing of R is 
perhaps the simplest and most elegant mathematical way of expressing 
strain compatibility; but it is also difficult to understand in detail and 
difficult to interpret geometrically. 

An alternative and more explicit approach was used by Signorini 
(1943) to express compatibility amongst strains and rotations. The 
method was rediscovered in a geological context by Cobbold (1977, 
1980) and reviewed by Cutler & Cobbold (1985). Here we start once 
again from first principles, but take the method a little further, so as to 
obtain simple curvature equations. 

Consider a smooth grid of orthogonal curvilinear co-ordinates, x I 
and x:, parallel to strain trajectories in the deformed state. The exact 
shape of this grid we suppose to be defined by the co-ordinate 
transformation 

xl = xl(zl, z~); x2 = x2(zl,z,) ,  (AI) 

where z~ and z2 are common Cartesian co-ordinates. Elements of both 
grids are linearly related, as follows: 

dzl] = [Oz,/OXl Ozt/ax2] fdx~] 
dzeJ [Oz2/Ox ~ i~z~/&r~J [da-~J" (12) 

where the matrix on the right contains the components of the transfor- 
mation gradient tensor. Because the curvilinear co-ordinates xl and x 2 
are orthogonal, the transformation gradient can be expressed as the 
product of (i) a rigid rotation through an angle a (positive if anti- 
clockwise from zl ) and (ii) a shape change with scale factors h l and h,: 

[ 0 z2/(3), 1 [OZl/OXl iJz2/Ox2J Ozt/Ox2] I - s i n  c1 2ions ~t I [0 " (A3) 

Now h t and h e cannot vary in space independently of each other, 
because the components of the transformation gradient tensor must 
satisfy the following compatibility equations: 

~-x~\Oxl/ ax~ \Ox2/" Ox~ ~ i~xl \~x,l"  (14) 

Substitution of (A3) into (A4) yields, after some algebra, 

Oa/Oxl = ( - l /h2)  Ohl/OX2; Oa/Ox 2 = (1/hi) ah~/Ox t. (A5) 

Equations (A1)-(A5) are identical to those of Cobbold (1980, 
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Fig. A1. Curvature and directional curvature of a strain trajectory. Tis 
a unit vector tangent to trajectory. N is a unit vector normal to 
trajectory and pointing towards centre of curvature, i.e. top left (a) or 
bottom right (b). True curvatures are identical in both examples, but 
directional curvatures are of opposite sign. See text for details and 

references. 

equations 1-5). Those of Cutler & Cobbold (1985, equations 1,2, 3, 8 
and 11) differ only in that they represent the undeformed state and 
hence are written in upper-case letters. Equations (A5) express grid 
curvature (left) and its alternative definition in terms of grid spacing 
(right). More familiar measures of curvature are obtained by consider- 
ing elements of true distance along the xl and x2 directions: 

dsl = hi dxl; ds 2 = h 2 dx2, (A6) 

where s1 and sz are true arc lengths, not co-ordinates. Substituting (A6) 
into (A5), we obtain the linear relationships (see Cobbold 1980) 

k~ = 3a/ds~ = -3b~/Osz; k 2 = Oa/Os 2 = Ob2/Osl, (A7) 

where bl and b2 are logarithmic scale factors given by 

bj = In ht; b 2 = In h2. (A8) 

The quantities kt and kz in (A7) are measures of curvature. The 
usual way of defining the curvature of a line at a point P (see, for 
example, Bourne & Kendall 1977, p. 63) is first to define a unit vector, 
T, tangent to the curve at P (Fig. A1). The rate of change of T with 
positive distance s along the curve, is dT/ds. This quantity is equal to 
xN, where N is a unit vector normal to the curve at P, and x is a positive 
scalar quantity, known as the curvature. In two dimensions x is the 
absolute value of the quantity k = Oa/Os used in equation (A7) above 
(Bourne & Kendall 1977, p. 66). In fact, k can be positive or negative, 
depending upon the direction of the unit normal, N (Fig. AI) .  Thus we 
refer to k as the directional curvature. The radius of curvature is 
defined as r = l& = 1/Ik I. 

Strain trajectories in the undeformed state can be represented in a 
similar way, using another set of orthogonal curvilinear co-ordinates. 
We denote these as X1 and X2 and refer them to a Cartesian frame Z~, 
Z2. Hence,  using upper-case letters instead of their lower-case equiv- 
alents, equations (A1)-(A8) may be rewritten and become valid for 
the undeformed state. In particular, equations (7) become 

K 1 = 3A/OS~ = -OB1/OS 2 

K z = OA/OS2 = OB2/OS 1. (A9) 

As a result of deformation, strain trajectories in the undeformed 
state become strain trajectories in the deformed state (Cobbold 1979). 
For convenience, we may assume that X~ and X2 become xl and x2, 
respectively, so that deformation is simply expressed as 

X 1 = X I ;  X 2 = X 2. (A10) 

The reader can easily check that equation (A3), together with its 
equivalent in upper-case letters for the undeformed state, when both 
substituted into (10), yield the usual relationship between Cartesian 
frames z and Z (e.g. De Paor 1983, equation 78): 

3Zl/OZ, O z , / O Z 2 1 = [ c o s a  - s i n ~ ] [ 2 0 ,  0 ] [  c o s A  s i n A I  
aze/OZ~ az2/aZ2] [sin a cos 22 L-s in  A cos A ] '  

( A l l )  

where 2~ and ,I. 2, the principal stretches in the nomenclature of 
Truesdell & Toupin (1960), are given by 

21 = hi~Hi; )t 2 = h2/H 2. (A12) 

Taking logarithms of both sides of (AI2),  we define the logarithmic 
stretches: 

el = In 21 = b I - BI; e2 = In 22 = b 2 - B2, (A13) 

where (A8) and its upper-case equivalent have been used. 
Now we are in a position to investigate how the directional curva- 

tures change as a result of deformation. We substitute (A12) and (A13) 
and the upper-case equivalent of (A6) into (A9); then we compare the 
result with (A7). This yields the required expressions for curvature 
change: 

KI = ~-2(kl - f l ) ;  K2 = 2J(k2 - f 2 ) ,  (A14) 

where ft and f2 we define to be the flexures, in other words the strain 
gradients 

fl = -OrliDs2; ]~ = cgeJOs I. (A15) 

There is a clear mathematical analogy between the flexures defined 
in (A15) and the directional curvatures defined in (A7). 

Three-dimensional equivalents of the above 2-D equations can be 
derived in the same way (see Borg 1963, pp. 75-76, for a partial 
discussion), but require more careful definition of curvatures and 
rotations. We leave the topic to a future publication. 


